Power-Gating Single-Rail MOS Current-Mode Logic Circuits Using High- Threshold PMOS Transistors as Linear Resistors

نویسندگان

  • Ruiping Cao
  • Jianping Hu
  • Xuecheng Xiang
چکیده

Abstract: In this paper, a power-gating technology for single-rail MOS Current Mode Logic (SRMCML) circuits is presented, which use the high-threshold PMOS transistors as linear load resistors to reduce the power dissipation in the sleep mode. The basic SRMCML cells, such as buffer/inverter, AND2/NAND2, AND3/NAND3, OR2/NOR2, OR3/NOR3, XOR2/XNOR2, multiplexer, and 1-bit full adder, are used to verify the effectiveness of the proposed power-gating scheme. The equivalent model for calculating energy dissipations of the power-gating SRMCML circuits is constructed. All circuits are simulated with HSPICE at a 130 nm CMOS process. By simulating power-gating SRMCML circuits in active and sleep modes, it is concluded that the power dissipation of power-gating SRMCML circuits in sleep mode is reduced with the decrease of the device sizes of high-threshold PMOS sleep transistors, while the power dissipation of power-gating SRMCML circuits is almost independent of the device sizes of sleep transistors in active mode. The power dissipation comparisons among power-gating SRMCML, conventional SRMCML, and power-gating static CMOS circuits are carried out. The power dissipation of the proposed power-gating SRMCML circuits is the least among the three above mentioned structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Sizing of Power-Gating Single-Rail MOS Current Mode Logic

Almost all power-gating circuits used in MOS current-mode circuits were realized with dual-rail schemes. In this paper, a power-gating scheme for single-rail MOS current mode logic (SRMCML) is presented. The modeling of the sleep transistor in power-gating circuits is constructed and analyzed. The optimization methods for sizing sleep transistors of power-gating circuits are addressed in terms ...

متن کامل

High Speed Full Swing Current Mode BiCMOS Logical Operators

In this paper the design of a new high-speed current mode BiCMOS logic circuits isproposed. By altering the threshold detector circuit of the conventional current mode logic circuitsand applying the multiple value logic (MVL) approach the number of transistors in basic logicoperators are significantly reduced and hence a reduction of chip area and power dissipation as wellas an increase in spee...

متن کامل

Single-Rail MOS Current Mode Logic Circuits for Low-Power and High- Speed Applications

Abstract MOS Current-Mode Logic (MCML) is usually used for high-speed applications. However, almost all MCML circuits are realized with dual-rail scheme. The dual-rail logic circuits increase extra area overhead and the complexity of the layout place and route. Moreover, little standard cells of the dualrail logic circuits have been developed for place-and-route tools, such as Cadence Encounter...

متن کامل

Near-threshold Computing of Single-rail MOS Current Mode Logic Circuits

Scaling supply voltage is an efficient technique to achieve low power-delay product. This study presents low-power Single-Rail MOS Current Mode Logic (SRMCML) circuits which operate on near-threshold region. The near-threshold operations for the basic SRMCML circuits such as inverter/buffer, OR2/NOR2 and 2/NAND2, OR3/NOR3 and XOR3/NXOR3 are investigated. All circuits are simulated with HSPICE a...

متن کامل

TRANSISTOR GATING: A Technique for Leakage Power Reduction in CMOS Circuits

Abstract — In CMOS circuit’s design, as the threshold voltage is reduced due to voltage scaling, it leads to increase in sub-threshold leakage current and hence static power dissipation. In this paper we propose a power reduction technique named transistor gating. In this technique two sleep transistors PMOS and NMOS are inserted in between the supply voltage and ground. A PMOS is inserted in b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015